
Overview
● What's the problem?

– Software licenses are a limited resource.

– How do we run jobs so that they are guaranteed
to get all the licenses they need?

● A solution
– Model the license economy using shadow

licenses

● The implementation
– The License Shadowing Daemon

● What can go wrong?

What's the problem?
● License basics: seats, servers, etc.
● The easy but flawed approach: don't start a

job if the license server(s) say there aren't
enough seats.

● The big problem: jobs don't check out
licenses as soon as they run.

● e.g. 2 seats for software foo, 2 already
running jobs are going to use foo in 10s time.
Nothing to stop scheduling a 3rd foo job which
will fail.

A partial solution
● Use the software usage assertions in the job

to model the license consumption across the
whole economy

● #!/bin/sh
#PBS lsoftware=foo:bar
#PBS lncpus=12
foo foo.in > foo.out
bar bar.in > bar.out

● But what if they don't? We kill them.

The knee bone's connected
to the....
LSD

PBS scheduler

PBS scheduler

License
server
License
server

...

Job 1

Job 2

...

...

...

Model behaviour
● LSD maintains an internal model of the

license economy that shadows the actual
license economy.

● The model is built from info sent from the
PBS schedulers
– Snapshots: all running and suspended jobs

– Reservations: Can I run job X?

– Cancellations: OK, you said I can run X, but I've
changed my mind.

Who says what when

LSD
Scheduler 1 Scheduler 2

SnapshotSnapshotSnapshotSnapshot

Snapshot

Reserve

Reserve

Cancel

...

Snapshot

Reserve

Cancel

...

T
im

e

The really ugly parts
● Licenses are consumed in idiosyncratic

ways. We have to model these
idiosyncrasies.

● How many seats do we have anyway?
● External consumption of seats which

effectively depletes the pool.
● We have to detect rogue jobs and kill them.
● Have to parse the human-oriented output

from license servers.

The implementation
● Event-driven python program built on top of

asyncore.
● No blocking reads: if LSD blocked, both PBS

schedulers would block.
● Vendors' license consumption idiosyncrasies

are handled by plugins.
● A plugin is just a python module containing

some agreed definitions.

Plug and play
● A plugin must have
def createInstances()
and return a dictionary of BasePlugin
instances, keyed by software name.
e.g. {“foo”:FooPlugin(),
“bar”:BarPlugin()}

● Extend BasePlugin to encapsulate all vendor
weirdness and parse license query output.

● And drop your *.py files in the plugins dir

What can go wrong?
● If a job checks out a license without asking

for it, there will be a delay before it gets
killed. During that period, licenses are
overcommitted.

● Possible ambiguity in identifying rogue jobs.
When in doubt, don't kill.

● Users outside of PBS can consume seats.
Allow some headroom for this and
dynamically adjust pool size to cope.

● All schedulers need to be running in order to
model the whole economy.

Now what?
● Its ready to test.
● Probably just fire it up on the live system, but

with the schedulers ignoring what it says for
the time being

● A test environment could be created by
building a basic license mechanism for test
jobs to use.

● Will be able to monitor it via
http://hostname:nnnn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

